
A Heuristic Approach to Detect 
Opaque Predicates that Disrupt 

Static Disassembly

By: Yu-Jye Tung, Ian G. Harris



Opaque Predicates

Definition: conditional branches that always evaluate to true or false. Thus, 
one of their branches is unreachable at runtime (a.k.a superfluous branch).

"Opaque 

Predicates"

Invariant expression evaluates to True

unconditional branch superfluous branch

unreachable 
basic block



Opaque Predicates

The damage is what's inserted into the unreachable basic blocks 
introduced by opaque predicates' superfluous branches.

"Opaque 

Predicates"

Invariant expression evaluates to True

unreachable 
basic block



Opaque Predicates' Damage

• Code Bloat

• Disassembly Desynchronization

"Opaque 

Predicates"

Invariant expression evaluates to True

unreachable 
basic block



Other Approaches

Does the conditional branch contain an 

invariant expression?

Dynamic Symbolic 

Execution
Machine 

Learning
Value-Set 

AnalysisStatistical

Analysis

Pattern

Matching

Ref.: M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi, “Opaque predicates detection by abstract interpretation,” in 

International Conference on Algebraic Methodology and Software Technology. Springer, 2006, pp. 81–95.

Ref.: P. LaFosse (2017) Automated opaque predicate removal. [Online]. Available: https://binary.ninja/2017/10/01/automated

-opaque-predicate-removal.htm.

Ref.: R. Tofighi-Shirazi, I. Asăvoae, P. Elbaz-Vincent, and T.-H. Le, “Defeating opaque predicates statically through machine 

learning and binary analysis,” in Proceedings of the 3rd ACM Workshop on Software Protection. ACM, 2019, pp. 15–26.

Ref.: J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque predicate detection in obfuscated binary code,” in 

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015, pp. 757–768.

Ref.: S. Bardin, R. David, and J.-Y. Marion, “Backward-bounded dse: targeting infeasibility questions on obfuscated codes,” in 

2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 633–651.

https://binary.ninja/2017/10/01/automated-opaque-predicate-removal.htm


Classification of Opaque Predicates

Trivial

• Invariant expression is constructed inside a basic block.

Weak

• Invariant expression is constructed throughout a function.

Strong

• Invariant expression is constructed across multiple functions.

Full

• Invariant expression is constructed across multiple processes.

Ref.: C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transformations,” Department of Computer 

Science, The University of Auckland, New Zealand, Tech. Rep., 1997.



Our Detection Method

We detect opaque predicates by identifying the superfluous branch whose 
target basic block contains the damage. Currently, we focus on when the 
damage is disassembly desynchronization.

"Opaque 

Predicates"

Junk Bytes

Invariant expression evaluates to True



How Our Method Identifies Damage

Our method can correctly identify the superfluous branch by analyzing 
each conditional branch's outgoing basic blocks for illogical behaviors.



Our Rules To Identify Illogical Behaviors

nonexistence memory address

unreasonable memory offset

abrupt basic block end

unimplemented BNILs percentage

priviledge instruction usage

memory pointer constraints

defined but unused



Nonexistence Memory Address

• Target address of a control-flow altering instruction must be in the 
executable section of mapped address space. 

• Memory location used to store written data must be in writable section 
of mapped address space.



Unreasonable Memory Offset

.• A memory offset should not be extremely large or small.

• A data structure in high-level programming languages (e.g., array, 

structure) is accessed by an offset from the beginning of the data 

structure when compiled to machine code.



Abrupt Basic Block End

• An incomplete basic block cannot be part of the disassembly. 

• A basic block is an incomplete basic block if it does not have a unique 

exit point, with explicit outgoing edges or implicit outgoing edges.



Unimplemented BNILs Percentage

• A basic block is illogical if it contains too many instructions that 

BinaryNinja’s lifter cannot lift to BNILs.

"LLIL"



Privileged Instruction Usage

• A user space program, cannot executes a privileged instruction, or any 

instruction that can only be executed in the most privileged level.

"Copies the value from the second operand (source operand) to the I/O port specified 

with the destination operand (first operand)."



Memory Pointer Constraints

• A memory pointer should only be stored or accessed in a full-length 
register and never a sub-register (e.g., AX instead of EAX in x86).

• A memory pointer is restricted from operation by × and ÷ in the set of 
primitive arithmetic operators {+, −, ×, ÷}.

• A memory pointer should not store its own memory address to itself.

• If a memory pointer is a stack pointer, it cannot be directly assigned a 
constant since a stack pointer keeps track of current stack frame.



Defined But Unused

• Every defined variable should have a subsequent instruction that uses it.

"None of the status flags that TEST affects (SF, ZF, and PF ) are used"



Main Limitation

Detecting opaque predicates in the presence of the obfuscation technique 
junk code insertion.

• Inserts carefully selected code into the instruction stream such that the 
inserted code will not affect program functionalities.

Our dataflow rule, defined_but_unused, will erroneously identify a basic 
block containing junk code as exhibiting illogical behaviors.



Evaluation

We implement our method as a BinaryNinja plugin.

RQ1

• What is the performance of our tool on protected code (TP, 

FN, F1)?

RQ2

• What is the error rate of our tool on unprotected code?

github.com/yellowbyte/opaque-predicates-detective



Evaluation: RQ2

We use all 109 GNU core utilities' executable binaries compiled with 
GCC at optimization level O0, O1, O2, and O3 as ground truth.

Of the 436 combined GNU core utilities’ executable binaries across the 
four optimization levels, our tool has 61 false positive identifications.

All 61 false positive identifications are found when analyzing executable 
binaries compiled at optimization level O0 since unoptimized binaries can 
naturally contain junk code and the defined_but_unused rule causes false 
identification in the presence of junk code.



Evaluation: Dataset

We evaluate our tool by inserting trivial, weak, and strong opaque 
predicates generated by Tigress into the obfuscation benchmark provided 
by Banescu.

Note: we discard source files in benchmark that are randomly generated 
by Tigress since randomly generated programs are unrealistic examples.

tigress.wtf

github.com/tum-i22/obfuscation-benchmarks



Evaluation: RQ1

Accuracy of our tool on detecting trivial, weak, and strong opaque predicates.

Accuracy of our tool on detecting trivial, weak, and strong opaque predicates without defined_but_unused rule.



Reason For FP Other Than Junk Code

If the inserted junk bytes create multiple unreachable basic blocks and our
rules detect illogical behaviors in an unreachable basic block that does not
contain the start of the junk bytes sequence.

"2f a0 29 ab 61 4b 72"



Summary

An invariant expression in a conditional branch is not the only identifier for 
an opaque predicate; it can also be identified through its superfluous 
branch.

Here we present the first approach to detect opaque predicates by 
identifying corresponding superfluous branches.

This novel approach allows us to detect opaque predicates that disrupt 
disassembly regardless of how the invariant expression is constructed.

github.com/yellowbyte/opaque-predicates-detective


